Oscillation Criteria for Second Order Matrix Dynamic Equations on a Time Scale
نویسندگان
چکیده
We obtain oscillation criteria for a second order self-adjoint matrix differential equation on a measure chain in terms of the eigenvalues of the coefficient matrices and the graininess function. We illustrate our results with some nontrivial examples.
منابع مشابه
Oscillation Criteria for Second-Order Quasilinear Neutral Delay Dynamic Equations on Time Scales
We establish some new oscillation criteria for the second-order quasilinear neutral delay dynamic equations r t zΔ t γ Δ q1 t x τ1 t q2 t x τ2 t 0 on a time scale T, where z t x t p t x τ0 t , 0 < α < γ < β. Our results generalize and improve some known results for oscillation of second-order nonlinear delay dynamic equations on time scales. Some examples are considered to illustrate our main r...
متن کاملOscillation of Second Order Nonlinear Dynamic Equations on Time Scales
By means of Riccati transformation techniques, we establish some oscillation criteria for a second order nonlinear dynamic equation on time scales in terms of the coefficients. We give examples of dynamic equations to which previously known oscillation criteria are not applicable.
متن کاملForced Oscillation of Second-order Nonlinear Dynamic Equations on Time Scales
In this paper, by defining a class of functions, we establish some oscillation criteria for the second order nonlinear dynamic equations with forced term x (t) + a(t)f(x(q(t))) = e(t) on a time scale T. Our results unify the oscillation of the second order forced differential equation and the second order forced difference equation. An example is considered to illustrate the main results.
متن کاملNonlinear Oscillation of a Class of Second-Order Dynamic Equations on Time Scales
In this paper, we discuss the oscillation of certain second-order nonlinear dynamic equations on time scales. We establish some oscillation criteria for the equations by applying a generalized Riccati transformation technique. Our results improve and extend some known results in the recent literature. Mathematics Subject Classification: 39A10
متن کاملDynamic Systems and Applications 17 (2008) 551-570 OSCILLATION OF SECOND-ORDER NONLINEAR DYNAMIC EQUATIONS ON TIME SCALES
By using the functions of the form H(t, s) and a generalized Riccati technique, we establish new Kamenev-type and interval oscillation criteria for second-order nonlinear dynamic equations on time scales of the form ( p(t)x(t) )∆ + f(t, x(σ(t))) = 0. The obtained interval oscillation criteria can be applied to equations with forcing term. Two examples are included to show the significance of th...
متن کامل